In vitro cytotoxicity of Tanacetum vulgare mediated silver nanoparticles against breast cancer (MCF-7) cell lines
نویسندگان
چکیده
Purpose: The present investigation describes the biosynthesis of Silver nanoparticles (AgNPs) using Tanacetum vulgare leaf extract by an environmental-friendly method. Also, the in-vitro cytotoxicity of synthesized AgNPs towards the human breast cancer (MCF-7) cell lines. Methods: Ag NPs were prepared from AgNO3 using Tanacetum vulgare leaf extract polyphenols as reducing and capping agent. Further, the prepared AgNPs were studied by using characterization techniques such as XRD, FT-IR, UV-Vis and TEM. Additionally, the synthesized AgNPs were studied for their cytotoxicity against MCF-7 by an MTT assay. Results: The synthesized AgNPs were characterized by using various microscopic and spectroscopic techniques. FT-IR, UV-vis, TEM, XRD and EDS analysis confirmed the formation of AgNPs. HRTEM microscopic images revealed that the formed AgNPs are spherical, small and polydispersed in nature with an average size of 10 nm. Further, the in-vitro cytotoxicity of Tanacetum vulgare mediated AgNPs showed a dose dependent toxicity towards breast cancer (MCF-7) cell lines. Conclusions: A low-cost and facile green approach for the AgNPs synthesis by using Tanacetum vulgare extract is reported. Tanacetum vulgare extract induced AgNPs have exhibited dose dependant cytotoxic activity against MCF-7 cell lines.
منابع مشابه
Evaluation of Anti-oxidant and Anti-cancer Properties of Silver Nanoparticles Synthesized by Apigenin toward Breast Cancer MCF-7 Cell Line
Introduction: Cancer is one of the most common diseases in the modern societies, which results from the non-stop growth of cells in the body. Due to the advancement of nanobiotechnology, highly effective herbal metabolites can be used to treat cancer. Apigenin is a natural flavonoid that is found in abundance in fruits, vegetables and herbs. The purpose of this study was to investigate the anti...
متن کاملDesign, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents
A new group of 4-(Imidazolylmethyl) quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitro anti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 value...
متن کاملDesign, Synthesis and Biological Evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline Derivatives as Selective COX-2 Inhibitors and In-vitro Anti-breast Cancer Agents
A new group of 4-(Imidazolylmethyl) quinoline derivatives possessing a methylsulfonyl COX-2 pharmacophore at the para position of the C-2 phenyl ring were designed and synthesized as selective COX-2 inhibitors and in-vitro anti breast cancer agents. In-vitro COX-1 and COX-2 inhibition studies showed that all the compounds were potent and selective inhibitors of the COX-2 isozyme with IC50 value...
متن کاملاثر ضد سرطانی نانوذرات نقره هشتوجهی و کرویشکل روی سلولهای سرطانی پستان رده MCF-7
Background: The modern science of nanotechnology is an interdisciplinary science that has contributed to advances in cancer treatment. This study was performed to evaluate the therapeutic effects of biosynthesized silver nanoparticles on breast cancer cell of line MCF-7 in vitro. Methods: This analytical study was performed in Kerman and Bam University of Medical Sciences, Bam City, Kerma...
متن کاملEffect of topotycan and zinc oxide nanoparticles combination on cytotoxicity and P53 gene expression against breast cancer (MCF-7) cell line
Introduction: Breast cancer is one of the most common malignancies in women worldwide. Today, nanoparticles are one of the hopes of treatment and diagnosis of many diseases, including cancer. the The present study aimed to explore the effect of topotycan and zinc oxide nanoparticles (ZnONPs) combination on cytotoxicity and P53 gene expression in MCF7 breast cancer cells. Materials and Methods: ...
متن کامل